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A New Method for Estimating Life

Distributions from Incomplete Data

by
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We construct a new estimator for a continuous life distribution from incomplete

data, the Piecewise Exponential Estimator (PEXE). We show that the PEXE is strongly

consistent under a mild restriction on the distribution of the censoring random

variables (possibly non-identical and non-continuous). Then we consider the Product

Limit Estimator (PLE), introduced by Kaplan and Meier (1958). We prove the strong

consistency of the PLE under a mild regularity condition on the distributions of the

censoring random variables. This result extends previous ones obtained by various

researchers. Finally we compare the new PEXE and traditional PIE.
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1. Introduction and Sumry.

Let X1, X2 , be independent identically distributed (i.i.d.) lifelengths with

a common continuous life distribution G and let L1 , L2 , ... be nonnegative censoring

random variables (r.v. 's) not necessarily contimlous or i.i.d. We assume that

[X 1 , LIJ, EX2, L2 ], ... is a sequence of independent pairs defined on a common

probability space (n, B, P). Without loss of generality we assume that for each

w c a the sequence XI(&), X2 (W), ... consists of distinct positive real numbers.

Let I denote the indicator function, let Tq - min{Xq, Lq} be the removal time of

the qth item on test, and let rq = I(X : L ) denote the cause of removal of the qthq q
item, q = 1, 2, .... We consider the problem of estimating 1 - G, the under-

lying survival function, from (T1 , tiJ, .. , ITn , n j, n - 1, 2, ..... This is the

incomplete data problem as formulat d by Kaplan and Meier (1958). We note that our

assumptions on the lifelengths and censoring r.v. 's are less restrictive than those

assumed in the theory of competing risks, the theory of life tables, and the usual

treatments in biostatistics. Traditionally one or more of the following assumptions

have been made: i.i.d. censoring r.v. 's, continuous lifelengths, continuous censoring

r.v. 's, and the independence of the lifelength and the corresponding censoring r.v. of

each item on test. [Kaplan and Meier (1958), Breslow and Crowley (1974), Peterson

(1977), Langberg, Proschan, and Quinzi (1980)j.

In Section 2 we construct a new estimator for the underlying survival function G,

the Piecewise Exponential Estimator (PEXE), and denote it by v(t). In Section 3 we

use a theorem proven in Section 4 to show that the PEXE is a strongly consistent

estimator of U under mild regularity conditions. In particular, we obtain the strong

consistency of the PEXE when Xq, Lq are independent r.v.'s, q - 1, 2, ... and under

most of the "traditional" assumptions discussed in the previous paragraph. In Section

S we consider the Product Limit Estimator (PLE), introduced by Kaplan and Meier (1958),

-- ~~~~~~ ~~ ..lt 
'

... .. .. ..... .. ... .. .. .. . . . . .... , , ... -: '
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that serves as the principal nonparametric estimator to date of the survival function

G. We show that under a variety of conditions the PLE is a strongly consistent

estimator of f. These results extend those obtained by Peterson (1977), and Langberg,

Proschan, and Quinzi (1980). Finally, in Section 6 we compare the new PEXE and the

traditional PLE.

I'
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2. Piecewise Eyponential Esti;ator.

In this section we introduce a new estimator for a continuous life distribution

from incomplete data: the Piecewise Exponential Estimator (PE(E).

We approach the incomplete data problem from, the viewpoint of reliability and

life testing. An item at age zero is placed on life test. It eventually leaves the

test either because it fails, yielding a complete life length, or because it is

withdrawn while still functioning, yielding a censored lifelength. Thus if an item

on test is an observed failure, C = 1, and if it is a withdrawal, q - 0,
qq

q a 1, ... , n. Starting with a sample of initial size n, the number of items at
n n

time t is denoted by Nn(t) = E I(T > t). Let Tdn) = I denote tho uMber of
q ql

observed failures and let ln:l < ... < Zn: (n) denote the consecutive observed

failure times, with Zn:0 .

Let R(t) = -Xn ?(t) denote the hazard function of the life distribution G,

t c [0, Supfu: -(u) > 01). On the interval (Zn:qlj Z n:q , we estimate

[Zn q - Zn:q l)'(R(Zn~q) - R(Zn: q -i)) by rn,q = Z f*q Nn(U)duj-, the number ofn• .~- ~ - Zn:q. 1  j~q

observed failures per unit time in the interval (Zn:q-l' Zn:qI, q = 1, ... i i(n).
We note that n:q N (u)du is the total time on test in the interval

Zn:q-I

(Zn.-, Zn:q], q - 1, ... , T(n). These hazard slope estimators:

rn,q , q - 1, ... , T(n), define a piecewise linear estimator of the hazard function R,

which in turn leads to a piecewise exponential estimator of the underlying

survival fumction G, given explicitly by the following definition.

Definition 2.1. For T(n, w) z I let A n,q(W) =

(Z n:q(w) - Zn:q-l(w))rn:q(w), q - 1, ... , r(n, w), w e 0. Then the Piecewise

Exponential Estimator (PEXE) of the survival function G, denoted by En(t, W), is

!au*1% I on the set {r(n, w) - 0 or t e (--, OJ), is equal toq-l
exp(-- Znq-1()) n,q) on the set (T(n, w) Z 1, t c (Zn:qlCW),

j'ln,j -~))r~~)

Zn (w)], q - 1, ... , i(n, w)), and is equal to exp -  ' Anj) on the set

n-1



t ~ U (Cn, w) 1 , t e (ZnTn)C. (W ) .

For the sake of simplicity we supress the argument w in I$t, w).

n
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3. Strong Consistency of the PEXE.

In this section we use Theorem 3.2, stated below and proven in Section 4, to

obtain the strong consistency of the PEXE under various conditions. We need a

definition and some notation.

Definition 3.1. Let K be a function defined on (--, -). We say that K is a

subdistribution function (s.d.f.) if K is nondecreasing, right contiuous, and assumes

values in [0, 1J.

For a s.d.f. K, let K(x) - lirn K(y) - K(x) be the subsurvival function

corresponding to K, let C(K) be the set of all continuity points of K, and let a(K) =

~sup(t: K(t) > 0}.

We are now ready to state Theorem 3.2.

Theorem 3.2. Assume the following:

(3.1) There is a s.d.f. F(t) such that .lii n' I I(T > t) F(t) for t C(F),
7r ql q

and

(3.2) There is a s.d.f. F(t, 1) such that
n

.u.-: -'I P(T t 1} = F(t, 1) for t e(--, -).Sql q

Then there is a set a, e B, P{ I = 1 , such that for all w e a

t
lir En(t) - expf-fC[(u)J" dF(u, 1)) for t e (0, a(F(., 1))).

n-w 0

Now we use Theorem 3.2 to obtain the strong consistency of the PEXE under

various conditions. For simplicity, we denote throughout M(F(., 1)) by a1.

First we prove the strong consistency when the lifelength of each item on

test and its censoring r.v. are independent.
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Theorem 3.3. Assume the following:

(i) The r.v.'s Xq, Lq are independent for q 1 1, 2, ... ,

and
n

(ii) There is a s.d.f. H(t) such that lira n" I P(L t) H(t) for t c C(H).
n.o q.l q

Then there is a set Q1. P(O1 1a 1, such that for all 1 :

im En(t) - ((t) for t e C0, al1).
n-o-

t
Proof. Let ] (t) - ((t)ff(t) and F(t, 1) = If(u)dG(u) for t " [0, -). To

0
obtain the desired result it suffices, by Theorem 3.2, to verify Conditions (3.1),

(3.2) and to show that:

t
(3.3) U(t) - exp(-f[T(u)i dF(u, 1)} for t c [0, oi).

0

First we verify Conditions (3.1), (3.2). Let t c (--, -) and n a 1, 2,
£ Then by Assumption (i):

..n -n
* (3.4) 1:7;nl1 P(Tq > t) - (t)[n " 1 1 P(Lq > t)I, and

qal q=l

(3.5) l,4!"nI  P T < t, Cq = 1 i n 1 P{Lq > ul]dG(u).
n- q-l q q-l

By Assumption (i) and the definition of F, C(P) - C(H). Thus Condition (3.1)

follows by Assumptions (i), (ii), and Equation (3.4).

Condition (3.2) follows from Assumptions (i), (ii), Equation (3.5), and the

dominated convergence theorem.

Finally we verify Equation (3.3). By the definitions of F(t) and F(t, 1),
t 1 t 1

f( -1fPu 1)a t;(u)3' dG(u) for t £0 C, u(F)). Consequently Equation (3.3)
0 0

follows by the continuity ofG.
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Next we obtain from Theorem 3.3 a corollary of practical importance.

Assume that most of the "traditional" conditions presented in Section 1 hold

(but not necessarily the continuity of the censoring r.v. 's). Then Assumptions (i),

(ii) of Theorem 3.3 hold and we obtain:

Corollary 3.4. Assume that the r.v.'s Xq, Lq are independent, q = 1, 2,

and that the r.v.'s Lq, q - 1, 2, ... , are i.i.d. Then there is a set fl 1 B, P(aI } = 1,

such that for all w c a1:

lir n G' - for t E0, ).

Now we derive the strong consistency of Fn(t) when the censoring r.v. 's are i.i.d.

n

but not necessarily independent of the corresponding lifelengths.

Theorem 3.5. Assume that the pairs EXq, L q, q = 1, 2, ... are i.i.d. Then

there is a set a, c B, P(nl } = 1, such that for all w c nl' lim Fn(t) - C(t) for
nmn-p-

t e CO, al) iff

(3.6) P(L1 •tIX1 - t} = P(L1 > tIX1 > t} for t e E0, al).

Proof. To obtain the desired result it suffices to show that (a) Conditions

(3.1), (3.2) hold and that (b) Conditions (3.3) and (3.6) are equivalent.

(a) Let F(t) - P(TI s t} and F(t, 1) a P(T 1 ! t, El = I t (- , ). Then

Conditions (3.1), (3.2) hold trivially.

(b) Let A be a Borel set contained in CO, a). Then:

(3.7) P(T1 £ A, Cl 1 1 f P(L > uIX 1 = u}dG(u).

A

First we show that Condition (3.3) implies Condition (3.6). By the

continuity of G and by Equation (3.7):

e .. . .- , -3, .. .
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t t
f[G(u)J -dG(u) = -urf(t) f [Tr(u) 1 dF(u, 1)
0 0

-1
tF(u)]'p{L1 P uX 1 = u}dG(u) for t c [0, a).
0

Consequently Condition (3.6) follows since a ci(G).

Finally we show that Condition (3.6) implies Condition (3.3). By Condition

(3.6) and Equation (3.7), we have:

t
(3.8) E(t, 1) f fCU(u)J 'F(u)dG(u) for t c [0, a,), and

0

t t
(3.9) fiF(u)i dF(u, 1) = fFC(u)] dG(u) for t e [0, ad.

0 0

Consequently Condition (3.3) follows from Equation (3.9) and the continuity of G. II

Note that En(t) is a strongly consistent estimator of the survival function

whenever Conditions (3.1) through (3.3) hold. Finally we provide an example where

Conditions (3.1) through (3.3) hold. First we need the following definition.

Definition 3.6. [Marshall and Olkin (1967)J. Let A, A2, and X1,2 be

nonnegative real nunbers, A1 + A2 + A > 0. Then the random pair U, V] with
1 2 1,2

nonnegative components has a Marshall Olkin Bivariate Exponential Distribution

($)BVED) with parameter [Al, A2 , Al, 2j if for all t, s c [0, a):

P{U > t, V > sl - exp{- 1t - A 2s - A 1,2 max(t, s)}.

We now construct the example.

Example 3.7. Let x1, A1 ,20 Y1, Y2 P ... be nonnegative real numbers,

Aq - X1 A '1,2 + Yq > 0, q - 1, 2, ..., and let X q , Lqj, q - 1, 2, ..., be a sequence

of random pairs having MOBVED's with parameters [Av YqP A 1 ,2J respectively. Assume

that lir yn y c [0, -), and that X1 + A1,2 + Y > 0. We show that under these

assumptions, n (t) is a strongly consistent estimator.
in
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Note that for t e [0, an) anq = 1, 2,.

P{Xq > t} = exp{-(x 1 + X1, 2)t), P{Tq > t}= exp(-Aqt}, and

P(Tq > t, =E q ( 1 + A 1 ,2)Aqlexp{'Aqt}

Let F(t) = exp{-At} and WF(t, 1) = (xI + A ,2)A- exp{-At}, t c [0, -). Clearly

Conditions (3.1) through (3.3) hold. Thus, by Theorem 3.2, E (t) is a strongly

consistent estimator of U for t e -0, .

In particular, if the random pairs [Xq, L q], q = I, 2, ..., are i.i.d. with a

MOBVED, then 9n(t) is a strongly consistent estimator of for t E [0, C ).

5,

!I

*1 J
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4. Proof of Theorem 3.2.

In this section we present a proof of Theorem 3.2. Let
lnFn(t, w) n- 1  I(T (w) > t) and Fn(t, 1,w)

q=l

in

n'1 I(T (a) s t, 9 = 1), n = 1, 2, ... , t € (--, in, w £ n.
qal q q

For the sake of simplicity in notation we supress throughout the argument W.t 1
Note that the continuity of the function exp{-f3'(u)jildF(u, 1) in CO, a 1)

0
follows from the continuity of F(t, 1), which in turn, follows from the continuity

of G. Thus to prove the result of Theorem 3.1, it suffices to show by a standard

argument [Chung (1974), pp. 132-133] that:
t

(4.1) lir En(t) - exp{-f[F(u)]'ldF(u, 1)), w.p.l. for t c C0, ai ) .
n-a 0

First we prove that to obtain Statement (4.1), it suffices to show that:
t t

(4.2) lira fOr (u)) 3dFn(u, 1) f J[r(u) I dF(u, 1), w.p.l. for t e C0, a(F)).
n*- 0 n 040

Then we complete the proof of Theorem 3.2 by verifying Statement (4.2).

We need some more notation and two lenas. Let a(n, t) =

max(k: k - 0, ... , c(n), Zn:k t), t e [0, al), n= 1, 29 ... , and let xi

denote the largest integer less than or equal to x, x e (--, -).

Lena 4.1. Assume that Conditions (3.1), (3.2) hold. Then

(4.3) liIr Pn(t) - Fr(t), w.p.l. for t e CCF),
andn

(4.4) lim Fn(t, 1) = F(t, 1), w.p.1. for all t [0, -).'ik n



Proof. To prove Statements (4.3) and (4.4) it suffices to show by Conditions

(3.1), (3.2) that for all t C--, i):

n

1 inrn(t) - n I P(T > t)j 0, w. p. 1., and that
n-- n q-l q

lim[F (t, 1) n'"1 In T t, C ) 0, w.p.l.
nq- q q

The preceding two statements follow by the strong law of large numbers.

Lemna 4.2. Assume that Conditions (3.1), (3.2) hold. Then

(4.5) n:(n) > t, w.p.l. for t [ £0, a 1 )

Proof. Let lim Z = a. For a = Statement (4.5) follows trivially.
-- W n:r (n)

Assume a < -; then by Statement (4.4):
~m

F(s, 1) = lim m Fm(s , 1) S limm'1 =lp(&q

< F(a, 1) for all s c [0, -), where {m} is a subsequence of the positive

integers.

Thus a aI . Consequently Statement (4.5) follows. {-

We show now that to prove Statement (4.1), it suffices to verify Statement

(4.2).

Lema 4.3. Assume that Conditions (3.1), (3.2) hold. Then:
i t

(4.6) limI in rn(t) + f[lrn(u)]'ldFn  J 0, w.p.l. for t e £0, ).
n4 0 n n,~

Proof. Let n2 c B, P(22) = 1, and let t c C0, a,). Then by Stattents (4.3)

through (4.5) for every w c a2 there is a positive integer n(w) such that
t -1

Irn(t) > 0, r(n) a 1, J(IPn(u)J dFn(u, 1) < -, and Zn:T(n) > t for n a n(w). Let

A2" Then:



(4.7) [ar n (Zn:q.1) -1 T (Zn:q Zn:q-l rn,q

CnPn(Zn: q)J' for q = 1, ... , '(n), n a n(w).

By Inequality (4.7):

a(nt) -1

-Zrffn qt) a I CnnZn:qlpq=l

tfnu)i-Zncu, 1) - CrnP(t)i-l for n 2 n(w).
0

Consequently:

(4.8) fliiittnE (t) + f [F uJc1r 1] 0
noo 0

Further, by Inequality (4.7):

() a(n 0)+1 -1 t f-1(u ) 1dF~(,1
-U~ ~En ():gni(Zn q)J3 : ~'nu

qml 0 ~
-1

+ [nin(Zn:a(n,t)+l
) j-

By Condition (3.2) there is a 6 c (0, (0 t) and a positive integer nI such that

a(n, t) + 1 5 nF(t + 6, 1) for n a n1 . Thus:
1l-

n (Z+)J "  En(1 - n'(a(n, t) + 1))J 1
ly(n:a(n,t)+l~ :

!gEn(1 - F(t + 6, 1W 1 :- -nl(t + 6, 1))] " for n 2 n .

Consequently:

rn t ftP (u) dFn(u 1)) 0

n~m 0

Statement (4.6) follows now from Inequalities (4.8) and (4.9). II

W
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. Let 8 Sup(F(t, 1): t e [0, a)), t g E0. a(F)), and b(n, t) -
max{T(n), a(n, t) + 1}. Assume that the r.v.'s L1, ... , L2, ... are i.i.d. Then by

considering the cases F(t, 1) - 8 and F(t, 1) < 0, it follows that

lim 1k(Zn:b(n,t)) > 0. Thus if the r.v.'s LI, L2, ... are i.i.d. Statement (4.6)

holds for t E CO, a(F)).

We complete the proof of Theorem 3.2 by verifying Statement (4.2).

Lemma 4.4. Assume that Conditions (3.1), (3.2) are satisfied. Then

Statement (4.2) holds.
,nProof. Let Fn(U-, 1) - n'-~ I P{T q < t, E q a 1}, u (- ) and let

t e [0, a(F)). Upon integration by parts:

t -1 t
J[FnCu)" dFnCU, 1) = -fF nCu-, 1)d[r (U)j 1

0 0 n

+ C n(t)] lFn(t, 1) -rn(O)J'IFn(O, 1) =
t t
.f{F n u-, 1) - F(u, 1))d[FnCu)i-1 -fFCu, l)d[rn (U)]-

-E[Fc , JFO0

( t)jlFn(t, 1) - ['nnO) ' 1).

Thus, by the continuity of F(., 1), and upon integration by parts:

t -1t
(4.10) f[Fn~u)] diFnCu, 1) - f CF (u)iJ dF (u, 1) +

[Fn~t)] {Fn(t, ) -Ft, 1)) - [rnCO)]'l(Fn(O, 1) - F(0, 1))

- t
~(FnCU-, 1) - F~u, 1))d[yr(u)j

"1

Next note that by Statement (4.3), the continuity of F(u, 1), and the dominated

convergence theorem:

t t
(4.11) lim f[nCu)' dF(u, 1) - f[(u)' d(u, 1), w.p.1.,

n*- 0 0



..... ~nt ""(' .. . I4,3), (4.4):

(4.12) lim[n(t)J-l {Fn(t, 1) - F(t, 1)) - 0, and

nri-1
li"mFn(o)J' F(o, 1) - F(O, 1)} - 0, w.p.l.,

and that by the continuity of F(., 1):

(4.13) lir SupfIFn(u-, 1) - F(u, 1)1, u E [0, til = 0, w.p.l.

Consequently the desired result follows by Statements (4.10) through (4.13).

Finally, assune that the r.v.ls LI, L2, ..., are i.i.d. Then by the remark

following Lemma 4.3, and L/ Lemma 4.4, Statement (4.1) holds for t c CO, a(F)).

Consequently if the r.v.'s LI , L2, .. are i.i.d. then Corollary 3.4, holds for

t c [0, c(F)).

I

4

it
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-, ~ ~ G-. the PLE.

In this section we first prove that as n . - the PLE converges to
t

exp(-f[T[(u)]'ldF(u, 1)) for t £ E0, c4)) Then we use this result to obtain the
0

strong consistency of the PE under various conditions.

Let fn(t) denote the PLE. Then by the continuity of G, %(t) is given by

1 , T(n) - 0 or t c (--, 0),

q-1 [nF(Z .)J[nr (Z .) + 1 "1 ,
j=l n:j n n:j

tT (t [Zn:q- 1 , Z n:q ), q It ... , . (n),

1rI [nfn(Z .)J[nfrn(Z .) + 1] - ', T(n) > 1, t e CZn:tn), )
j~l nn:j n n:) :j n

Note that originally Kaplan and Meier (1958) left the PLE undetermined on the set*

(max(Tq, q = 1, ... , n}, -).

We prove now that %(t) converges.

Theorem 5.1. Assume that Conditions (3.1), (3.2) hold. Then there is a set

0, e B, P(QI ) = 1, such that for all Q :

t
lim n(t) = expi-f[r(u)]'dF(u, 1)) for t c C0, a(F)).

n 0
t

Proof. Note that the continuity of the function exp{-f[PT(u)] dF(u, 1)) in

CO, a(F)) follows from the continuity of F~t, 1) which, in turn, follows from the

continuity of G. Thus to prove the desired result it suffices to show by a standard

argument [Chung (1974), pp. 132-133] that:
t

(5.1) 1im n(t) U ep(-fEF(u)J'dF(u, 1)), w.p.l. for t c [0, *(F)).
l4-n. 0

To prove Statement (5.1), it suffices to show by Luaa 4.4 that:

7T7%
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12 1inPntO (ci) + (?~u)'- 1dF (U 1)"' 4 o! t c~ ~n n

We prove now Statement (5.2). Note that:

(5.) X 1 -U~l x-1 ( l-1 o 0

By the definition of %t) and Inequality (5.3), for t c (0, ctCF)):

a(n,t) -1 * ) wp1I nnZ~)i . IF (u) J1 dF (u, 1,WPl

Thus

t
(5.4) 1imftdiE,(t) + JET (u)fl-1dFn(ul 1)j 2: 0, w-P.1.

Further, by the definition of %~(t) and Inequality (5.3), for t [ 0, a(F)):

a a(n, t) -
I ( npY(Z. q)+ 11

1a (n, t) t d Cnu, 1)
Ern(Zn .- l)J n

qul 0~nqfFC)

Thus, by Condition (3.1):

(5.5) MlIiit'1 (t) + fo Pn(u) J dFn(u, ) ,wp1

Statement (5.2) follows now by Inequalities (5.4) and (5.5). I
* Note that for t £ (0, iL(F)), liii ,ax{Tq, q a 1, ... , n) > t. Thus

Statement 5.2 holds regardless how we define ffn(t) on the set: (max{Tq, q -1, .,)m;



It follows from Theorem 5.1 that if we replace in Theorems 3.3, 3.5, and

Corollary 3.4, En(t) by Rn(t) and a, by a(F), the results remain valid. Thus we

obtain the strong consistency of the PLE under a variety of Conditions. In

particular, we obtain the strong consistency of the PLE when Xq, Lq are independent

r.v.'s, q - 1, 2, ..., and under most of the "traditional" assumptions.

Finally we note that these results extend those obtained by Peterson (1977),

and by Langberg, Proschan, and Quinzi (15,.0).

IfL

.1
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6. A Comparison of the Piecewise Exponential Estiiiator and the Product-Limit

Estimator.

In this final section we point out some differences and similarities between the

PEXE and the PLE.

The most obvic is difference between the two estimators is that the PEXE is

continuous and strictly decrrc. sing on [0, Zn: (n)) while the PLE is a step function

with jumps at the observed failures. Since in most life testing situations the

survival function is anticipated to be decreasing smoothly over time, the PEXE seems

the more appropriate estimator of a life distribution.

Another difference which favors th3 PEXE is its dependence on the actual

withdrawal times in each interval between consec'cive observed failures (through the

total tie on test) compared with the PLE's dependence on only the number of with-

J.avals in me,:i ofl the intervals. The PEXE ises more information from the

incomplete d%ta than does the PLE.

It is clear from Sections 4 and 5 that the PEXE and the PLE have the same strong

(w.p.l.) limiting fu7tction. Also the PEXE has the same weak limiting process as that

given for the PLE by Breslow and Crowley (1974). [A derivation of this result is

-orthccming.] Consequnntly, finite sample comparisons of the PEXE and the PIE will

be important in determining whether the differences cited in the previous paragraph

(which disappear in the limit) result in quantitative advantages for the PEXE over

the PLE. Chen, Hollander, and Langberg (1980) are conducting such a study. They

assume that the restrictive assumptions discussed in Section I hold and that, in

addition, P{X> t} - [P{L1 • t}] P for t ' £0, -), where P is a positive real nizber.

.
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